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F I L M  A B S O R P T I O N  ON A P L A N E  S U R F A C E  

I M B E D D E D  IN A G R A N U L A T E D  M E D I U M  

A.  V .  G o r i n  and  A.  I. F e d o r c h e n k o  UDC 532.546:66.071.7 

1. I n t r o d u c t i o n .  Absorption of a volatile component by an absorbent is one of the most important 
processes determining the efficiency of an absorption heat reformer (AHR). Thus according to [1] the main 
exergy losses (up to 45%) in lithium-bromide-operated absorption refrigerators (ALBR) are due to absorbers. 
Furthermore, insufficiency of heat and mass transfer in AHR absorbers leads to a considerable decrease in the 
cold productivity and hence a decrease in the total efficiency of the refrigerating pack as a whole. 

It is notable that until recently the calculation of AHR absorber processes and their efficiency analysis 
have been performed without taking into adcount the fact that heat and mass transfer processes are going 
on jointly. This caused a considerable discrepancy between experimental and calculated values of the actual 
absorption processes. The coupled heat and mass transfer for absorption on a draining-down liquid film and 
on drops was first considered in [2, 3]. It was shown that the neglect of heat release during absorption in the 
lithium-bromide-water vapor system leads to a considerable overprediction of the mass transfer coefficient. 
At the same time, as follows from theoretical calculations, the smallness of the molecular transfer coefficients' 
imposes some principal limitations on the methods of increasing the heat and mass transfer rates in film 
absorption processes. 

A natural way of overcoming these limitations is to imbed the heat exchange surfaces in a granular bed. 
In this case the transfer coefficients increase considerably due to the dispersion terms. However, at the same 
time the hydraulic resistance to vapor seepage also experiences a drastic increase. Thus, mere qualitative 
speculations about the great potentials of such innovations are obviously insufficient, and no quantitative 
theories exist as yet. This has given impetus to the present research. 

2. Phys i ca l  and  M a t h e m a t i c a l  M o d e l  of  H e a t  and  Mass  Trans fe r  in a G r a n u l a r  Bed.  Let 
us consider nonisothermal absorption in a film on an inclined plane surface imbedded in a granular medium. 
The schematic of the flow and the coordinate system are shown in the Fig. 1. 

The solution flows clown the surface with volume rate of flow Q per unit width of the film. The constant 
relative mass concentration of the more volatile component Co and the temperature To are given at the film 
inlet cross section, Co being smaller than the equilibrium mass concentration Ce at the given temperature To. 
Assuming that the conditions of thermodynamic equilibrium are satisfied on the surface of the film and using 
the Gibbs' phase rule we get the relation 

C~ = Ft(T~, P), (2.1) 

where P is the medium pressure; the particular form of the function ~ is specified by the choice of the 
absorbent and of the substance which is absorbed. In the general case the dependence (2.1) is nonlinear. 
However, in the absorption processes the pressure remains constant and the temperature changes in a narrow 
range. Therefore, it is reasonable to keep only the linear part of the Taylor series expansion of (2.1): 

cs + 2Ts, (2.2) 
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Fig. 1 

where ~1, ~2 are the given functions of the pressure. As was noted above, the concentration Co at the initial 
section of the film is less than the equilibrium one Ce at the initial temperature To. Consequently, the inequality 
Co < ( l (P )  + ~2(P)T0 follows from (2.2). 

Assuming that the film flow is in the steady state and that the granular medium is isotropic, let us 
write the equations of momentum, diffusion, and energy in the film as 

# pc u2 (2.3) --~ u + - - ~  = pg cos 0 = pg~; 

OC _ O2C 
u-~x = De~ Oy 2 ; (2.4) 

OT 02T 
u = o y 2  ' ( 2 . 5 )  

where # and p are the dynamical viscosity and the density of the solution, respectively, K and c are the 
permeability and the inertial coefficient, respectively, Dr and a~ff are the effective diffusion and the thermal 
diffusivity coefficient, respectively. For close-packed beds of spherical particles with diameter dp and porosity e, 
the permeability is defined by the expression [4] 

K = d2~3 
150(1 - e) 2 " 

We define the effective coefficients as follows [5]: 

a~a = a~ + 0.1udp, D ~  = 0.28DL + 0.1udp, .k~ = ALe + Ap(1 -- e), 

where A~ is the effective thermal conductivity of granular medium in the absence of filtration, DL is the 
coefficient of molecular diffusion, and ~p is the thermal conductivity of the granular bed material. 

Since the coefficients of Eq. (2.3) do not depend on the filtration rate, it can be solved explicitly with 
respect to u: 

~1 + 4Ca; - 1 
u = uo  2Ca; ' (2.6) 

where UD = K g o / v  is the velocity determined by Darcy's law, ~ = (~1 + 4Ga~ - 1)/(2Ga~) is the multiplier, 

taking account of inertial effects, v is the kinematic viscosity, and Ga~ = cK3/2g,~/v2 is the modified Galileo 
number for the granular medium. 

Values of the flow velocity, of the modified Galileo number, of the dispersion term, and of the granular 
bed's permeability are listed in Table 1 for some values of the granular diameter. According to experimental 
evidence [6] the inertial coefficient value e = 0.55 can be adopted for flows through different porous medium 
with Reynolds numbers Re = uvQ-(/v up to 18.1. As the maximum value of Re, corresponding to the sixth 
mode of Table 1, is almost two times smaller (Re = 9.6), the mentioned value c = 0.55 was adopted in all the 
subsequent calculations. 
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TABLE 1 

Mode No. dp, mm K.109 ,m 2 

1 
2 
3 
4 
5 
6 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

2.25 
9.00 

20.25 
36.00 
56.30 
81.00 

Ga* 

0.15 
1.23 
4.14 
9.82 

19.19 
33.15 

c m  

1.00 
2.66 
3.95 
4.96 
5.80 
6.53 

c m  UD, g~ 

1.14 
4.56 

10.25 
18.22 
28.47 
41.00 

0.880 
0.580 
0.385 
0.270 
0.200 
0.159 

m 2 0.1udp, 10 -7 se--~ 

5.02 
26.55 
59.22 
99.20 

145.02 
195.88 

Let us dwell a bit more on the choice of the value of porosity r It is well known [5] that for the central 
part of the close-packed bed of spherical particles the value ~ = 0.4 can be accepted. But, in a particular 
case, the flow proceeds in a narrow layer immediately adjacent to the wall surface, just where the structure 
of the granular packing is changed because of the wall presence. As a consequence the porosity ~ increases 
considerably. 

According to [5], in a granular bed composed of smooth balls the structure of only the layer immediately 
adjacent to the wall is distorted. For this layer the value e = 0.6 may be adopted as a mean porosity value, 
which will be used in further calculations. 

It follows from the filtration rate expression (2.6) that at 4Ga~ << 1 one can neglect in Eq. (2.3) 
the term quadratic in velocity. Let us estimate from the condition 4Ga} = 1 the bed granular's diameter, 
beginning from which a significant deviation from Darcy's law is observed: 

u2 1/3 e3 ]3/2 

For the lithium bromide solution at t = 35r with nonvolatile component concentration ~ = 51.12 % 
(u = 1.936.10 -6 m2/sec) it follows from (2.7) that dp = 0.588 mm (this value corresponds to the case of 
a film falling down along a vertical surface, that is, ~ = 0). Hence, in most cases of practical importance 
(dp >/1 mm) the inertial effects must be taken into account, that is, Eq. (2.3) must be used. 

Let us proceed now to the statement of the boundary value problem. As has been mentioned already 
the temperature To and concentration Co are given at the inlet cross section (x = 0) of the film: 

T(0, y) = To, C(0, y) = C0. (2.8) 

Assuming that heat is transferred to the film only with the absorbing vapor mass, the following relation 
at the free film surface can be written: 

O-~Y y=h p raDeff O-~Y y=h he, = , (2.9) 

where ra is the absorption heat; h = Q/u is the thickness of the solution film determined by the given mass 
flow rate Q. For the diffusion problem an apparent impermeability condition must be imposed on the solid 
surface at y = 0: 

aC  = 0, (2.10) 
Y y = 0  

while for the heat transfer problem two types of boundary conditions are of interest: isothermal and adiabatic 
surfaces. 
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For these cases the boundary conditions are, respectively, 

0) = (2.11) 

y=0 

Let us nondimensionalize the problem (2.3)-(2.5),(2.8)-(2.12) by introducing the following dimensionless 
parameters and variables 

y z - -  T - T o  ~ _ C - C o  ( 2 . 1 3 )  

y = ~, F -  p eb---~, T = Te~-To' C e -  C----~o' 

where Ce = ~1 + ~2To; Co = ~1 + ~2Te; Pe~ = Q/aem These result in 

02T 0 T  0 2 ~  1 r 
0ff 2 - 0 F '  Oy 2 = Le* 0 F ;  (2.14) 

T(0,~) = 0, C(0,y)  = 0; (2.15) 

C(F, 1) -- 1 - T(F, 1); (2.16) 

OT Le*K~ 0 C  = 

~-ff ~=1 ~ y=l 
(2.17) 

T(F, 0) = Tw; (2.18) 

OT tl = 0, (2.19) 
~-ff ~=0 I 

where Le* = Defr/a~n is the modified Lewis number; Ka = r~(Ce - Co)/cp(T~ - To). The system (2.14)-(2.19) 
is a boundary value problem with the fourth type boundary conditions. Hence, the Laplace transform method 
is the most suitable one for its solution. 

3. I s o t h e r m a l  Surface .  Let us consider the case of an isothermal surface. Applying the Laplace 
transform in F variable to Eq. (2.14) and to boundary conditions (2.16)-(2.18) we obtain, respectively, 

d~ 2 - Le* sC, d~ 2 = sT; (3.1) 

"~ T,, dE y=o T (~, 0) = - - ,  = 0; (3.2) 
s dy 

(~,1) = - - T  (~, 1), = Le*IQ (3.3) 
s d~ ~=1 
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The general solutions of Eq. (3,1) are of the form 

~= Ml cosh ~ , e ,  Y + M2 sinh v ~ e  , Y, T= N1 coshvrs~ + N2 sinhvfsy. 

By satisfying conditions (3.2), (3.3) we find the solution to the boundary value problem (3.1)-(3.3) in the 
image space: 

= 1_ (coshx/~- Tw) cosh t ~ e , y  _ r (3.4) 

C = s  (Lv/L-~e, K a s i n h v G s i n h ~ L ~ + C o s h  L ~ e ,  c o s h x / ~ ) -  8~(s)' 

--- 1 Tw Lv/L~-e* Kasinh sinh[x/'~(1 -g ) ]  +Twcosh cosh[v~(1 -~)1 
T = -  

s ( Lv/-~e, Ka sinh v/~ sinh L ~ e ,  + cosh L~,e, cosh V/~) 

, �9 S �9 

1 v / ' ~ K a  slnh L ~ e ,  s lnhvGy r 

+ ~  ( LVt-~e* Ka sinh v~  sinh l~ ,~ ,  + cosh ~ 1 , ~  cosh v~)  sqa(s)" (3.5) 

We determine the temperature and concentration profiles at the initial section (x ---* 0) and at infinity 
(x --+ oo) without performing an inverse transform to the original space by making use of the Laplace transform 
initial- and final-value theorems (Tauberian properties): 

lim sF(s) ---+ f(O), lim sF(s) ~ f(c~). (3.6) 
8 --"~'OO 8 - - ' + 0  

A distinct peculiarity of the problem in question is that there are three boundary layers in the initial 
section, namely, the heat and diffusion ones at the free surface and only the heat layer near the wall. Using 
the first of relations (3.6) we find an asymptote in the domain D0 = {(x,y) [ z ~ 0, y 60~(0)}: 

T(D) ~ s [ lim r (3.7) 
l s-oo ~(s)  /" 

yeod0) 

At large values of the parameter s let us set sinhs = coshs = eS/2. Since y 60~(0),  one can neglect 
the last term in r whereby we get from (3.7) 

T(o0)  = z: -1 e -W7 = T~ erfc T - ~  

In a similar way we find an asymptote for the domain D1 = {(x, y) I x ~ 0, y 6 O8(1)}: 

T(D1)_/:-I[ lim Lx/- Ka ] V/-~e*Ka erfc[ 1-~]  
~o-',(%) ~(s)  ] = LV~* g~  + 1 - ~ K ~  + 1 ~ ; (3.8) 

-C(D1),..,f_ 1 r 1 ~f-1 e-  s/ycQ-~0-~) 1 erfc[ - ~ ]  (3.9) 
-- I s oo --~-~1 - ~ K a  + 1 - ~ IQ + 1 L2x/Le*~J" "y605(1) 

The asymptotical values of temperature and concentration at infinity can be easily obtained from 
(3.4), (3.5) and from the second equation of (3.6) by letting s tend to zero and keeping the linear terms of 
the hyperbolic functions expansions: coshs _~ 1, sinh s _~ s. Hence, 

Coo = 1 - Tw, Tw -- Too. (3.10) 
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Making use of (2.13) one can easily check that the equilibrium equation (2.2) is satisfied by solution (3.10). 
Applying (3.8), (3.9) we find the heat and mass flows inward of the film depth: 

(3.12): 

j = _ p D ~  0_~ u 1 pDr t u 
= - f f -~-~-~e  -~ Co) D~x; (3.11) 

y y = h  v~ 1+V ~ ~_~: ~ 

_Aee OT 1 )~,IT(Te - To) [ u q=  (3.12) 

v ~  1 + V D . ~ r . ( C e - C o )  
y=h 

Local values of the Nusselt and Sherwood numbers on the free film surface are obtained from (3.11), 

N u =  a x _  gx _ ar L ~ ' - ~  Ka P~x, 
~ L ;~ L ( T~ - To) V ~  ,/-CP I(a + 1 

Sh = fix _- j x  = 1 D~,L p~/-~, 
DL pDL(Ce - Co) ~ Lv"-L~e*(v/-L~e* Ka + 1) 

where Pc* = ux/ar a, fi are the coefficients of heat and mass transfer, respectively. For the plate length- 
averaged values of the Nusselt and Sherwood numbers, we get 

/}J Nu dx 2ar L ~ Ka P ~ L ;  (3.13) 
1 

N u = ~  - 3V~ Lv~Ka+I 
0 

L 

~ =  ~ S h d x -  ~ Lv~L_Je,(Cg_ J Ko + 1) ~ Pet = ~ �9 (3.14) 
0 

As follows from (3.13) and (3.14), the heat and mass transfer does not depend on the solution flow rate in 
the initial section of the flow. 

Let compare the heat and mass transfer rate of the problem in question with that of the problem of 
nonisothermal absorption in the initial section of a film freely flowing down a smooth plate. For the latter 
case the averaged values of the Nusselt and Sherwood numbers have been obtained in [3] and can be written 
as 

Nu 0 V~  ~ / ~ K a  (_~) l /6r~ 1/2 = r e Q ;  (3.15) 
x / ~ K ~  + 1 

V ~  1 fRa~ ~ 1/8~ 1/2 
Sh~ = , / -G(V~Ka + 1) \ - 5 - )  ~eQ , (3.16) 

where PeQ = Q/aL; Q is the volume rate of flow per film unit width; Ra~ = g,~La/(uaL) is the Rayleigh 
number. 

Representing the Lewis number as Le* = LeDe~,i ai ,~ (where f~,B denotes the ratio f~,~ = f~lfB) and 
using (3.13)-(3.I6), we can write the ratio of the averaged Nusselt and Sherwood numbers for the granular 
medium case to those for flow over a smooth plate 

N--u S--h v / ~ K a  "4- 1 /.31/2 i3~1/21~ 1/3dtl/20 _1/2 
77 - N__~0 - ~ = 0.33 v/-~e, K a -4- 1 ~efr, L . . . . .  ~ ~ I,~Q . (3.17) 

Expressions (3.15) and (3.16) are obtained for the laminar film flow case. According to [7], the following 
Reynolds number range corresponds to this mode: 

Re ~ 0.47(Fi) Ul~ 
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TABLE 2 

To, Te, Co Cr a L �9 10 r, cp, ra, PL, t, L . 106, # �9 103, )t/., DL �9 109, Pr Lr a �9 102, K a  

K K m 2/sec k - ~  kJ k 1~ - ~  m'/sec Pa.sec m--~ m2/sec N/m 

308 311.2 0.47 0.49 1.38 2128 2641 1 5 4 4  1.936 3.0 0.455 2.355 14 0.017 8.52 7.3 

(Fi = O'3/(g//4p 3) is the Kapitsa number). 
For a lithium bromide solution with temperature and concentration corresponding to the parameters 

of an ALBR. absorber working substance (Table 2), we obtain from (3.17) that Re ~< 3.8 and conseqently 

PeQ = RePr  ~< 54. Because the maximum values of ~u~ ~ are achieved at PeQ = 54, the calculations of 
the relative intensity r/were done only for this Peclet number value. The results are listed in Table 3. 

From Tables 1 and 3 it is clear that at dp/> 1 ram, that is, when the flow mode deviates significantly 
from Darcy's law (~ ~ 0.58), heat and mass transfer of the granular medium begin to prevail, and at dp = 3 

(mode 6) the relative intensity 77 reaches an almost fourfold value. Hence, application of a granular bed enables 
one to achieve significant intensification of heat and mass exchange processes at the initial section of the film. 
However, neither the length of the initial section of the film nor the heat and mass exchange at the main 
section of the film can be estimated from the obtained asymptotic solutions (3.8) and (3.9). To determine 
these quantities, it is necessary to perform the inverse Laplace transform of (3.4) and (3.5). As expressions 
(3.4) and (3.5) are the quotients of two generalized polynomials, the expansion theorem (Heaviside's partial 
fraction rule) can be applied. Except for the obvious zero root so = 0, the denominator has a countable 
number of simple roots sn, which are determined by the equation ~(s) = 0: 

~ I Q  sinhv~sinh + cosh coshv/~ = 0. (3.18) 

Making use of the relations 

we obtain from (3.18) 

sin iz  
c o s h z = c o s i z ,  s i n h z -  i ' (3.19) 

cosiv/s cosz - Lv/-L~e* K~ sini v~s in i  = 0. 

Introducing the new variable # = i k/~--/Le*, we can find the characteristic equation from (3.20): 

cos # cos LV/-L-~e*# - Lv/-L'~e * Ka sin # sin Lv/-L-~e*/~ = 0, 

(3.20) 

which can be rewritten as 
1 

t a n # t a n  VLe '#  = . 

According to the expansion theorem, the solution in the original space is given by the expressions 

(3.21) 

C =  ~ O l ( S n )  T =  ~ (I)2(Sn) e s n z .  (3.22) eSPY' 
n=O n=O 

Let us calculate the denominator of (3.22) explicitly: 

[s~2(s)l's~ = L~e*Ka s inhv~sinh + coshv~cosh s + v/ '~ c~ Le' 
8n  

1 /;---; . ~ 1 s ,  1 ~ . . . .  / s ,  
cosh,/   sinh + cosnvsn slnnv ae, + ~ / L e "  I(a~]~:;-~'. s i nhx /~  cosh L ~  , + , (3.23) 
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TABLE 3 

Mode No. Le* 

0.75 
0.94 
0.97 
0.98 
0.9885 
0.992 

dp, mln 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

Dal/2Ra 113 Deff, L 

1.57 213 
3.14 1128 
4.72 2515 
6.30 4213 
7.87 6158 
9.45 8318 

Nu = Sh 

0.26 
0.87 
1.57 
2.26 
2.95 
3.63 

where the bracketed expression on the right-hand side of (3.23) is equal to zero by virtue of (3.18). Taking 
into account the relations 

1 , S L ~  * 1 . s i n h v ~  ' = - sin Lyre* It., sinh = - z i sin #n, 

c o s h v / ~  cos Lv/-L~e * #n, cosh S L ~  , = = COS Itn~ 

which are consequences of the dependence #n = i ~ / ~ L e *  and of (3.19), we obtain finally from (3.23) 

~s,,lim[s~(s)]'- #"{2 ( l + L e * K a ) c o s  L~/~e* # .  sin # .  + L v ~ e * ( K a + l ) s i n  LV~e* #= cos #n } 

Thus the general solution to the problem with an isothermal surface is given by the following expressions 
for the concentrat ion and temperature  distributions inside the film: 

�9 2 - -  
oo (COS Lx/'-~e*it. -- Tw) COS It, ~e  -Le #nz 

= (1 -- Tw) - 2 ~ cos It,] (3.24) 
n = l  I t n [ ( l + L e * K a )  cosv/-~e*it, sinit.+v/-~(Ka+ 1) sin Lx/-L---~-e*it. 

{ - 
T T~ 

= - 2~--~ Tw cos It n cos Lq"L-e*-e* It.  ( 1 ~)e  -Lr 

.=, @l+Le'Ka)cos L, Fgit .  sinit.+ L,/Cg(Ka+ 1)sin L, it. cosit.] 
�9 2 - -  "TwLv/-~e*Ka sin # .  sin Lv/'-L-~e*itn(1 - ~)e -Le g,~z 

It.[(l+Le*Ka)cosx/-lfCit. sin#.+v/-L-~(Ka+ 1) sin Lv"L--e;'e* It. cos It . ]  

Lv/-~i-e * IQ sin _itn sin LV'L-~e* it ,  ~e -Le*g2ng "[. (3.25) 
Itn[(l+Le*Ka)cosxffL'-Ce*it,~smit,~+Lv'-ffCe*(IQ+ 1) sin Lv/-LeWit, cos It,] J 

4. A n a l y s i s  o f  t h e  So lu t ion .  Since the sequence of the roots {it/} of the characteristic equation 
(3.21) is monotonical ly increasing, that  is, the inequality 

#1 < # 2 . . -  < # n  < . . .  

is satisfied, every sequential term of the series (3.24), (3.25) will be negligibly smaller than the previous one 
as ~ grows. Therefore, beginning with a certain value of ~0 it is reasonable to keep only the first terms of 
series expansions (3.24) and (3.25), that  is, we obtain 

* 2 - -  
G = C-~'~ - F l ( i t l , Y )  e - L e  ttlZp; (4.1) 

* 2 - -  Tp = Too -4- F 2 ( i t l , y )  e - L e  /'tlxP, (4.2) 
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where Coo = 1 - Tw-w; Too = Tw in accordance with the conditions (3.10); 

(cos LfWe*m - T~) cos ~1~ 
Fl(# l ,y )  = 2 

#i[(1 +Le*K~) cos Lv/-L-~#I sin ~i " J c L k / - ~ ( f ( a " [  - 1)sin Lv/L-~#l cos #l] ; 
- - T w  c o s  #1 COS L~e-~'-e*#l(1 --  ~) 

F2(# l ,y ) - -  2 # l [ ( l + L e ,  Ka)cos LV,_~__ei_e,# 1 s in# l+  Lx/'L'~'e*(Ka+ l)s in LVrL'~#I cos#l] 

T~ Lv/P-K. sin#l sin Lv/-~-e*#l(1 - ~) 

-t'#l[(l+Le*Ka)cosv/L"-'e*e*#lsin#l+vrL-'--e*e*(I(a+ 1)sin Lff-L~-e*#l cos#l] 

LV~-~-K. sin #1 sin Lx/-L-~-e*#ly } 

ar #1[(1 -I- Le* Ka) cos L V ~ # I  sin #1 -t- Lv/L-~e* (Is 1)sin gv/-~e*#l cos #1] " 

Taking the logarithms of Eqs. (4.1),(4.2) we obtain 

In (Voo - Up) = In F l (# l ,y )  -- Le*#~ z-p; (4.3) 

In (Tp - Too) = In F2(#l , : )  - Le*#~ iv- (4.4) 

Thus the relationship between the logarithms of the excesses of concentration AC---p -- C--~ - C'-p and of 
temperature ATp = Tp - Too and the longitudinal coordinate is a linear one. This fact permits us to carry 
out a full analogy between the heat and mass exchange at a given film section and the regular mode of 
nonstationary heat conduction problems. 

The theory of the Kondratiev regular mode proceeds from the relation vspace*2mm 

O In AT 
Ot = m, (4.5) 

where m = const; AT = Tc - T is the temperature excess, Tc is the constant temperature of the ambient 
medium. Differentiating (4.3),(4.4) with respect to ~p, we obtain 

01n ATp �9 2 
- L e  #1;  ( 4 . 6 )  

o-zp 

01n zxop = Le*#~. (4.7) 
0~p 

Expressions (4.6), (4.7) are completely similar to (4.5). The longitudinal coordinate ~ in them plays the role 
of time. The film section in which the heat and mass transfer proceeds in the mode of (4.6), (4.7) will be 
called the regular section. Let write Eqs. (4.6), (4.7) in the following form 

OATp = mATp, OA-Cp _ mAV---p (m : Le*#2). (4.8) 
0~p 0~p 

Expressions (4.8) look like boundary conditions of the third kind. Hence, the~factor m plays the role of 
the dimensionless coefficients of heat and mass transfer. The peculiarity of the problem, namely, the proximity 
of the Le* values to unity (see Table 3), enables one to express the root values as functions of the basic criteria 
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Le*, Ka. Since Le* -~ 1, let us represent it as Le* = 1 - (1 - Le*) = 1 - 8 [6 = (1 - Le*) is a small value]. In 
this case, the characteristic equation (3.21) can be written as 

1 

At 6 -+ 0, (4.7) degenerates into the equation tan 2/~(0) = 1/K=, which has roots defined by the expression 

At small 6 values it is natural to expect that the roots of Eq. (4.7) will be close to (4.I0). Thus, let us expand 
the sought root in a power series in 8: 

S = #(o)+ 6~,~o)+ 62 ~ o ) + . . .  (4.11) 

Substituting this expression into the left-hand side of Eq. (4.9) and expanding tangents into Taylor series in 
the/z (~ vicinity, we find 

tang = tan(# (~ + 6R~ ~ +---) --- tang (~ + 1 6R~o) + o(62), 
cos 2 #(0) 

tan [ ( 1 -  26-)/*]=tan (#(0)+ 6~0 ) _ 26 ,~0(~ + - - .  ) : tan #(0) + cos 21#(~ 6(~~ C ))  +~ 

tan # tan  ( 1 - - 2 ) # =  tan 2#(0) + 6 tan #(0) (2~0) #(0) O((~2). + 
cos ~ S(~ 2 / 

Expanding the right-hand side of Eq. (4.9) in a power series in 6 up to the linear term, we obtain 

t a n s  (~ (2~o) /l (~ 1 [  6 0(62)] tan2s(~ + - -  ,,oLI + + cos 2 S(o) 
For the zero- and first-order approximations we have, respectively, 

1 tans(~ ( ~ ) )  1 
tan2/~ = Ko s 

' - 2 [ < a '  

whence 

1 (S(0) cos 2 S(~ 
~ 0 ) =  ~ . + Katans (O) ) .  (4.12) 

Making use of the obvious trigonometric identity cos2s = 1/(1 + tan2s) we find finally from (4.12): 

1[0, ] 
~ 0 ) = 4  s~ + ~ ( i + i Q )  ' 

where the sign before the second addend is determined by the sign in (4.10). 
Thus, the roots of (3.21) can be estimated approximately as 

4- _S(~ /~a(l+Ka)_" 
Using the previously obtained concentration and temperature distributions in the film (4.1), (4.2) we find the 
local Sherwood and Nusselt numbers in the regular section: 

- -  , . *  2 - -  Nup- o~px____~p qpxp -2Ar Le Kaf(sl)~pe -~r u~zp; (4.14) 
~L ~L(T~ - To) 

S h p -  #pxp _ jpxp . .  2-~ DL pDL(T~ - To) = 2D~er,i e e S ~ p f ( s l ) e  - '~ ~'~ P, (4.15) 
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where 

sin #1(cos Lv/-~-e*#l -- T-s 
/(/~1) = 

[(1 + Le*Ka) cos Lv/-L-~#I sin #1 + v/-~e*(Ka + 1) sin L v ~ # l  cos #1] 

Thus the obtained solutions enable one to determine completely the heat exchange in the regular 
section. However, for the practical applications of the obtained results it is necessary to know the coordinate 
~o of the initial point of the film regular section. 

For the regular section, as has been elucidated previously, it is sufficient to keep only the first terms 
of the series (3.24) and (3.25). Thus it is necessary to estimate the remainders of the series (3.24) and (3.25) 
at ~ = 1, that is, on the film surface. Using the characteristic equation (3.21), we transform the functions 
F~(#., 1), F2(/z., 1) as follows: 

( c o s  - T o )  co s  
Fi (~ . ,  I) = 2 

#.[(1 + Le*Ka)cos Lv~-~e*#.sin/~. + LV~-~e*(K~ + 1)sin Lx/-L-~e*#. cos#.]  

2 cos Lx/-~e* ~,  (4.16) 
1 + K~ 2 " 

#" 1 + Le * Ka + ~ c o t  #n 

Since the value of Le* is close to unity, it is reasonable to assume that the transformed expression of the 
function Fz(#, ,  1) must coincide with that of the function F i (# , ,  1). Let us show that this is the case indeed: 

2 x/-'L~Ka sin # .  sin LV~-~#. - Tw cos #n 
F 2 ( # . ,  1)  = - -  

#" [(1 + Le*K,)cos Lv/~e*#n sin # ,  + LV/-~e*(Ka + 1)sin Lvr~e*#n cos #,]  [ ] 

_/--yy- 
cot #~ -- ::kk/lia, 

Hence we obtain finally 

L~/-L-jK ~ tan2 Lv/-~e.#" T~ cot#.  
= 2 cos v/~eee*#n (4.17) 

i + K ~  2 
#" 1 + Le*Ka + ~ c o t  #.  

From expression (4.13) one can see that for values of Le* close to unity terms of zero order are already a good 
approximation to the solution of the characteristic equation (3.21). Taking this into account, we obtain from 
(4.17): 

Tw I cot#~ 
2 cos Lv/-L~. 

F (m, i) = -- 1 + K ~  2 ' 
#" 1 + Le*K~ + / - - ~ c o t  #,~ 

which identically coincides with (4.16) for the function FI(# , ,  1). 
Thus, at Le* _~ 1 there is a complete mutual similarity of the concentration and temperature fields 

inside the film. Expression (4.16) can be simplified further. To this end let us utilize the relations following 
from the characteristic equation and from the condition Le* _ 1: 

; Ka (4.18) cot2~. __ K: ,  cos LV/-L-~e*#. ~- + 1 + I(a 

F ( # n , 1 ) = F i ( # n , 1 ) = F 2 ( # n , 1 )  = -- 

#n 

1 

1 + K .  
(4.19) 
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Using (4.19) and the characteristic equation tan2#n = 1/Ka, one can readily show that series (3.24) can be 
written as 

A ( 7 = C o o -  C = a l ( x ) + a 2 ( x ) - a 3 ( x ) - a 4 ( x ) + a s ( x ) + a 6 ( x ) - . . .  , (4.20) 

where an = [F(#n, 1)[ e - L e * u ~  > 0. It is obvious that the coefficients an monotonically tend to zero (so that 
an > an+l). For the regular section one can neglect all the terms of the series (4.20) except the first one. Let 
us estimate the error of such an approximation. In the regular section expression (4.20) becomes 

It is easy to show that the terms bn (~) for an arbitrary x are positive and constitute a monotonically decreasing 
sequence tending to zero. The series on the right-hand side satisfies all the conditions of the Leibniz test; 
therefore, one can write the estimate at once 

< bl( ) 

In the regular section the following inequality must be satisfied: 

A C p  -- a l ( ~  ) < (~ 

(5 > 0 is an arbitrarily small value given beforehand). 
Hence, the coordinate of the initial point of the regular section is a solution to the equation 

b l ( x p  0) = a 2 ( X p  0) - a 3 ( x p  0) = I F ( m ,  1)1 e -Lr200 ~~ - I F ( m ,  1)1 e -Lr176 = 5. (4.21) 

Since (4.21) is transcendental, one must perform numerical calculations to solve it. However the peculiarity of 
the problem is that the functions on the left-hand side of (4.21) have different scales. This makes it possible 
to find an approximate analytical expression for the root. 

Using (4.18), (4.19) one can see for himself that #2]F(#2,1)1 = #31F(#3,1)] = 7- Thus Eq. (4.21) 
becomes 

. *  2--0 . *  2--0 e - b e  #2 x p e - b e  #3 x p 
-- (4.22) 

#2 #3 7" 

To further simplify the expressions, let us denote the root to be found by the letter z. To solve Eq. (4.22) 
we use the Newton-Raphson-Kantorovich method. It is significant that the root value of the equation is 
essentially determined by the first term in the left-hand side of Eq. (4.22). Thus, neglecting the second term, 
we can easily find a zero approximation for the root: 

1 5#2 
z0 = ~ In 7 

Consider the function 

a ( z )  = 
#2 #3 7" 

Expanding G(z) into a Taylor series in the vicinity of z0 up to the linear term we obtain 

dG(zo)  (z - zo) (4.23) a(z )  = a(zo) + d----i-- 

Considering Z as a root to be found, from (4.23) we get 

a ( z o )  
z = zo d G ( z o ) / d z "  
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Computing the values of the functions G(z), dG(z)/dz at z0 point, we obtain finally the coordinate of the 
initial point of the regular section: 

1 '7 1 (~#2"~k ~/ ] n2 
_ o  (n = 
x p ---- ~ In (5~u2 Le*#3 /~2 ~ _/z3 

5. A d i a b a t i c  Surface .  The physical and mathematical formulation of the problem in nondimentional 
form (2.14)-(2.17) holds also for this case, but  the boundary condition (2.18) must be replaced by (2.19). The 
Laplace transform technique can also be used to solve the equations. We write the general solution in the 
image space by analogy with the isothermal surface case: 

- 1 sinhvf~c~ Y 1 (Ih(s) 
C . . . . .  (5.1) 

s sinhvGcosh~L--~-,. + Lv/L-~e * Ka sinh ~ L ~  c~ s c2(s ) ' 

-~ 1 Lv/LTe*K. smhx/~cosh g 1 (I)2(s) 
T =  - - (5.2) 

s s inhvgcosh  + v/~e*ga sinh coshvG s ~(s) 

Before proceeding to perform the inverse transform of expressions (5.1) and (5.2), let us find asymptotes 
in the initial section of the film and at infinity. 

Since at the initial section the thermal and diffusion layers are thin, and the solution does not "feel" 
the boundary conditions on the wall, the asymptotics of the expressions (5.1) and (5.2) for the case must 
coincide with the corresponding solutions (3.8) and (3.9) for the isothermal surface case. 

One can easily check to be certain that  this is really the case by using the scheme of reversing the 
solution in the image space which was offered in Section 3. 

It is natural that the plate length-averaged Sherwood and Nusselt numbers coincide, respectively, with 
the values (3.13) and (3.14). Similarly we find the asymptotic values of temperature and concentration at 
infinity: 

1 Ka 
Coo - - -  Too = 

1 + Ka' 1 + Ka" 

Now we proceed to invert the Laplace transform of the solution (5.1) and (5.2). These expressions do 
not satisfy the conditions of the expansion theorem. However, it is easy to show that rewriting them as 

= % ( 4  (5.3) 

we get the quotients of entire transcendental functions. Hence, the expansion theorem can be applied to the 

expressions written in such a form. It is seen from (5.3) that  poles of the functions ~ (s) and ~ (s) coincide. 
Besides the obvious zero root, there are a countable set of simple roots which are determined by the equation 

s i n h v / s c o s h ~ L  ~ -4- Lv/L--~e * IQ sinh L~Se , coshx/~ = O. (5.4) 

Note that  the zero root is a single root since lira c20(s) r O. Using relations (3.19) and introducing a 
s-*O 
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new variable # = iy/'s-/Le * , we obtain from (5.4) the characteristic equation 

tan LvI~e*#n + Lv/~e*K~tan#~ = 0. (5.5) 

Since ~ in the general case is an irrational number, no additional roots appear, and, consequently, 
the zero root and the roots of Eq. (5.5) are the only poles of functions (5.3). It is known from the operational 
calculus that  if ~(s)  and ~o(s) are extended polynomials with respect to s, and ~(s)  = sk~l (s ) ,  r = sk~l(s) 
(Ikl < 1), then 

lim r  = lim ffa(s) (5.6) 

where sn are the roots of the  equation ~ l ( s )  = O. 
Using (5.6) and inverse t ransform formulas (3.22) we obtain 

(30 
1 2 ~ sin Lv/L-~e*/~ c~ #~Y e - L e ' u ~ ;  (5.7) 

n = l  

-- Ka _ 2 ~ Lv/-L~e* Ka s in /~  cos (5.8) 
T = 1 + K------: 

n = l  

where B(#n)  = ( l+Le*Ka)  sin #n sin Lv/-~e*#n-Lx/L--~-(1 +Ka) cos #n cos LV~--~#n. 
6. A n a l y s i s  o f  t h e  S o l u t i o n .  The  characteristic equation (5.5) is a t ranscendental  one, and in the 

general case of arbi trary Le* values it can be solved only by numerical methods. However, restricting our 
consideration to values of Le* close to unity, we can derive the asymptotic solution of Eq. (5.5), as well as for 
the isothermal surface case. Note that  at Le* = 1 the roots can be easily found: 

#(0) = arctan 0. 

Therefore we shall search for the solution to Eq. (5.5) in the form of expansion (4.1) with respect to 
the small parameter  5 = 1 - Le*. Omit t ing calculations similar to those in Section 4, we obtain 

(0[" 1 - Le* 1 . 
= I + 2C/:  (6.1) 

It is significant that  (6.1) gives only the roots located in the range 

~ r ( n -  1/2) / Lxf-~e* < #2,, < (1/2 + n)~r, n = 1, 2 , . . .  

The roots ~2n+1 located in the range 

( l / 2 + n ) ~  < V2n+l < ( n +  l / 2 ) ~ / L v / ~ e  *, n = 1 ,2 , . . .  

are already not close to the roots of the unper turbed equation tan# = 0, hence we use a different approach to 
find them. Note that  the length l = (1/2 + n)~r(5/2) of the interval (~r(1/2 + n), (n + 1/2)~r / Lv/-~ ~ )  is small 
even at modera te  n values. Therefore it is possible to use the asymptotic expansions of the functions tan p 
and tan Lv/-L--~e*# close to their asymptotes y = ~r(1/2 + n) and y = ~r(1/2 + n) / Lv/L-~ ", respectively: 

tan Lv/~e.# ~ 1 at # --+ (1/2 + n)~/Lv/-~e * - O, 

(1/2 + - Le , 

1 
at #---*(1/2 + n)~ + O. t a n , _  (1/2 - ,  

(6.2) 
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Substitution of expansions (6.2) into the characteristic equation (5.5) yields 

(2~ + 1)~ 1 + LV~-JK~ 
#2,+1 - 2 1 + Le*K~ ' n = 0 ,1 , . . .  (6.3) 

Since the sequence of roots (6.1), (6.3) is monotonically increasing, there is a section of the film in which 
the regular mode of heat and mass transfer is realized as in the case of an isothermal surface. Consequently, 
one can write ( A ~  v = 7J, - Vr A T ,  = ToQ - T , ) :  

l n A V ,  = In Fl( t t l ,y)  - Le*#21~,; (6.4) 

In A T ,  = In F2(/q, y) - Le*tL2g,, (6.5) 

where 

2 sin Lv/-L-~e*/q cos ~ l Y .  
F~(~I,~) = mB(m)  ' 

x/-ff~e*Ka sin #i COS Lv/~e*/.tl~ 
F 2 ( , l , ~ )  - 2 

~lB(m) 

Differentiating expressions (6.4), (6.5) with respect to zp and making use of (6.3), we finally obtain 

O A T ,  _ o A - c ,  m A - r  
~ , ,  = m A T , ,  0~ ,  - 

 +Ko 
rn=-~--~, I + L e * K ~  ) ' ~  4 l + L e * K a  Le*" 

Lci o  1 + uo o~xT,  = ~ T % ,  o a r ,  _ m a c % ,  m = - ~ Le*. 
0g,  0g,  4 \ l + L e * K a  ] -- 4 l + L e * g a  

The expressions for the local Nusselt and Sherwood numbers in the regular section of the film practicMly 
coincide with (4.14) and (4.15), except the multiplier 

f ( # l )  = s in#l  sin Lv/L-~e*#l 
B(.1) 

To determine the initial coordinate of the regular section ~ we rewrite the functions F1 (#n, 1), F2 (#n, 1) 
as 

Ka Itan # .  I (6.6) 
IFI(~., 1)l = IF2(~., 1)[ = 2 #.[K.(1 + Le*K~) tan2#. + (1 + IQ)]" 

Substituting the Taylor series expansion of the function tan Lv/-~e*/z in the vicinities of the "even" roots 
]22n into the characteristic equation (5.5) we get 

2p 
tan2#2n - 5#2n tan/~2n + 1 = 0, (6.7) 

where 5 = 1 - Le*; p = I + [(1 + Le*)2] Ka. 
Equation (6.7) permits us to express the value of tan #2n in terms of the value of the corresponding 

root ~2n 

5#2n 
tan/~2, - - -  (6.8) 

2p 

Using (6.1) and (6.8), we find from (6.6) 

1 
[FI(~2n, 1)1 = 1F2(~2., 1)l - An 2 + B ' 
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where 

~.2 (1 -b Le*Ka)5. (1 + Ka)p 
A = - -  , B -  

4 p Ka5 

Let us define the form of the functions [FI(#, 1)[, IF2(#, 1)[ for roots with odd subscripts, that is, for 
# = #2n+1. Substitution of expressions (6.2) and (6.3) into (6.6) yields 

1 
IFl(#2n+l, 1)[ = IF~(#2n+l, 1)1 = (2n + 1)2C + D '  

where 

C = ~'25(1 + Ka)(1 + Lv/L--~-Ka) (1 + Le*K,)(1 + Lv/L-~e*K~) 
16(1 + Le*Ka) 2 ; D = 5K~ 

Using (6.2) and (6.8), it is easy to show that series (5.7) and, consequently, series (5.8) are alternating 
series and satisfy all the conditions of the Leibniz test. Thus the coordinate of the initial point -0xp of the 
regular section is to be determined from the inequality 

1 e _ L e * ~ 0  ~< r 
A+B 

Solving it with respect to ~0 and substituting the expression (6.1) for #2, we obtain 

In [(A + B)r - o >  xp 

In conclusion it may be said that  the results obtained in the present work prove the existence of a 
range of bed ball diameters for which the heat and mass transfer rate increases considerably (2-4 times) as 
compared to the case of film absorption on a smooth plate. The general analytical solutions are found both for 
isothermal and for adiabatic surfaces, from which the known boundary layer approximation solutions of the 
nonisothermal film absorption problem follow. It is proved that  when the bed bali diameter is greater than 
1.5 mm, a full analogy is observed between heat and mass transfer processes. This feature is connected with 
the proximity of the effective Lewis number to unity. It has been shown that  beginning at a certain distance 
from the inlet of the film the regular regime of heat and mass exchange is realized. A linear dependence of 
the logarithms of the temperature and concentration excesses on the longitudinal coordinate is characteristic 
for this mode. For both types of boundary conditions explicit analytical expressions are obtained for the 
coordinates of the initial point of the regular section. 
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